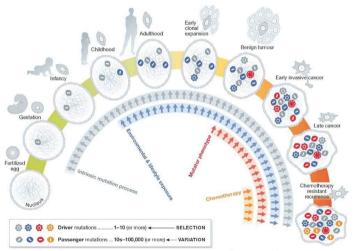
HIT'nDRIVE: Patient-Specific Multi-Driver Gene Prioritization for Precision Oncology


Raunak Shrestha

PhD Candidate, Bioinformatics, University of British Columbia Dr. Colin Collins' Laboratory, Vancouver Prostate Centre Dr. Cenk Sahinalp's Laboratory, Simon Fraser University / Indiana University

3rd November 2016

A D N A B N A B N A B

Background

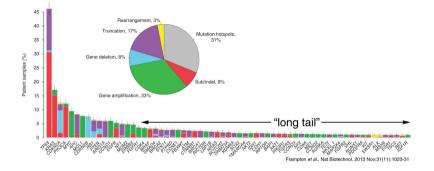
• Cancer is mediated by somatic evolution of various alterations in genome

・ロト ・四ト ・ヨト

Stratton MR. EMBO Molecular Medicine, 2011

HIT'nDRIVE: https://github.com/sfu-compbio/hitndrive

э


- Most of the alterations are neutral that provide no growth advantage to the tumor known as "passenger" alterations
- Very few alterations provide a net growth advantage and are positively selected for during tumorigenesis known as "driver" alterations

Challenge

- Driver alterations are diluted and are outnumbered by the passenger alterations
- This makes identification of driver alterations more complicated

4 H K 4 H K 4 H K 4 H

Background

- Most driver gene prediction methods rely on the recurrence frequency of alterations
- However, many drivers that affect only a small subset of cancer patients (long tail distribution)
- Infrequent driver genes may be functionally important and are likely to be missed by a frequency-based approach

HIT'nDRIVE

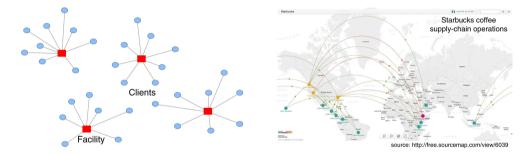
Shrestha et al. RECOMB 2014

 A combinatorial method that integrates genome and transcriptome data from tumor samples to prioritize genomic alterations as potential drivers using protein interaction network

HIT'nDRIVE: Multi-driver Gene Prioritization Based on Hitting Time

Raunak Shrestha^{1,2,*}, Ermin Hodzic^{3,*}, Jake Yeung^{2,4,*}, Kendric Wang², Thomas Sauerwald⁵, Phuong Dao⁶, Shawn Anderson², Himisha Beltran⁷, Mark A. Rubin⁷, Colin C. Collins^{2,8}, Gholamreza Haffari⁹, and S. Cenk Sahinalp^{3,10}

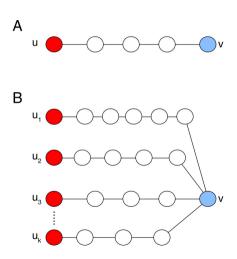
> R. Sharan (Ed.): RECOMB 2014, LNBI 8394, pp. 293–306, 2014. © Springer International Publishing Switzerland 2014


Our aim

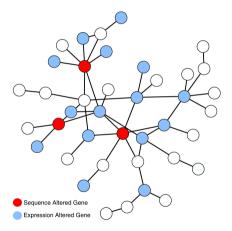
 Identify the most parsimonious set of drivers that explain most of the observed gene expression alterations

イロト イヨト イヨト イヨト

Facility Location Problem (standard)


• Concerned with the optimal placement of facilities to minimize associated costs

- Applications of (standard) facility location problem
 - Placement of Starbucks coffee outlets
 - Starbucks coffee supply-chain operations
 - Airline routing systems


Image: A mathematical states and a mathem

Random Walk on Interaction Network

- In order to capture uncertainty of gene interactions we consider random walks in interaction networks, and use hitting times to measure distance
- Hitting time, $H_{u,v}$ is defined as expected length of a random walk starting at *u* and visiting *v* for the first time. If we let the random variable $\tau_{u,v}$ denote the number of hops in a random walk from *u* to *v*, then $H_{u,v} = E[\tau_{u,v}]$.
- Multi-hitting time H_{U,v} is defined as expected minimum length of a random walk starting at any of the nodes in set U and visiting v for the first time. More specifically, H_{U,v} = E [min_{u∈U} τ_{u,v}]

Random Walk Facility Location (RWFL) Problem

 We define and model the problem as combinatorial optimization Random-Walk Facility Location problem

RWFL Problem

Let X be a set of potential driver genes and \mathcal{Y} be a set of expression altered (outlier) genes. Then, for a user defined k, the solution to RWFL problem is:

$$\arg\min_{X\subseteq\mathcal{X},|X|=k}\max_{y\in\mathcal{Y}}H_{X,y}$$

イロト イボト イヨト イヨ

• RWFL problem is NP-hard to solve

 In order to overcome the difficulty of solving RWFL, we introduce the following estimate of the multi-hitting time:

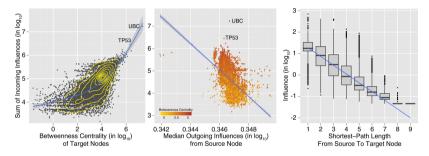
$$H_{U,v} \approx \frac{1}{\sum_{i=1}^{k} \frac{1}{H_{u_i,v}}}$$

• It works well and allows us to simplify the problem, making it solvable in reasonable amount of time

イロト イボト イヨト イヨ

Computing Single-Source Hitting Times

Vol 450 1 November 2007 del:10.1038/nature06201	nature
	LETTERS
First-passage times in complex so	cale-invariant media
S. Condamin ¹ , O. Bénichou ¹ , V. Tejedor ¹ , R. Voituriez ¹ & J. Klafter ²	
ur. Phys. J. B (2012) 85: 116 OI: 10.1140/epjb/c2012-20760-8	THE EUROPEAN PHYSICAL JOURNAL E
Regular Article	
f the deterministic Hill's algorithm w	
f the deterministic Hill's algorithm w imulations*	
Alean first-passage time calculations: cr of the deterministic Hill's algorithm w imulations" 1. Torchah ^{1,2} , P. Chehminiak ² , and P.A. Bates ^{1,4} exblart of UKCymmu Roby 2013 7199 gyfrwei Journe Journe 1000 (2013 7199	
f the deterministic Hill's algorithm w imulations* . Torehala ^{1,2} , P. Chelminiak ² , and P.A. Bates ^{1,a} echole et al. BMC System Biology 2015, 7/130	ith Monte Carlo


- 2007: Condamin *et al.* developed a method for accurate calculation of average hitting time in a complex network which depends on
 - Fractal Dimension: density of nodes
 - Random Walk Dimension: source-target distance in the network
- 2012: Torchala *et al.* extended Condamin *et al.* method
 - Hill's algorithm uses transition probabilities between node
 - Efficient method to calculate average hitting time in a network
- 2013: Torchala *et al.* implements their work based on Hill's algorithm

- 34

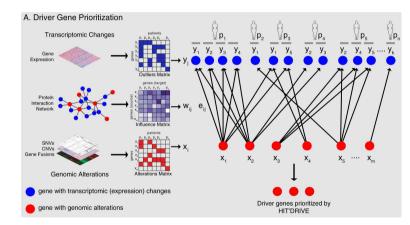
イロマ (雪) (日) (日)

Influence Matrix

- Influence value = inverse of average hitting time
- STRING ver.10 functional interaction network

- nodes occupying central positions in the network tend to receive more influence than the nodes in the periphery of the network (R = 0.61, *pvalue* < 10^{-16})
- negative correlation between total incoming influence and the median outgoing influence of a node (R = -0.54, pvalue < 10⁻¹⁶)

• Since RWFL is NP-hard, we reduce it to the Weighted Multi-Set Cover problem, which we can solve via ILP formulation


Weighted Multi-Set Cover (WMSC) Problem

WMSC asks to compute, the smallest set of drivers which "sufficiently" covers "most" of the patient specific expression altered genes:

$$\arg\min_{X\in\mathcal{X}}\min_{Y\subseteq\mathcal{Y},|Y|\geq\alpha|\mathcal{Y}|}|X| \quad \text{such that} \quad \forall y\in Y: \quad \sum_{x\in\mathcal{X}}w_{x,y}\geq\gamma_{y}$$

イロト イヨト イヨト イヨト

Overview of HIT'nDRIVE Algorithm

 Now we can formulate WMSC as ILP

$$\begin{array}{l} \min_{x_1,...,x_{|\mathcal{X}|}} \sum_i x_i \\ \text{s.t.} \\ \forall i, j : x_i = e_{ij} \\ \forall j : \sum_i e_{ij} w_{ij} \ge y_j \gamma \lambda_j \sum_i w_{ij} \\ \sum_j y_j \ge \alpha |\mathcal{Y}| \\ \forall p : arg_{\beta \lambda_j}(y_j) = 1 \\ x_i, e_{ij}, y_j \in \{0, 1\} \end{array}$$

イロマ (雪) (日) (日)

э

Shrestha et al., HITnDRIVE: Patient-Specific Multi-Driver Gene Prioritization for Precision Oncology (*In Submission*)

- Predicting cancer driver genes
- Predicting rare driver genes of cancer
- Predicting druggable driver gene targets of cancer
- Cancer sub-type classification using driver-seeded module
- Predicting driver-seeded module associated with patient's survival outcome
- Predicting mutually exclusive driver-seeded modules
- Predicting mechanisms of drug-response mechanisms

Acknowledgements

- Simon Fraser University
 - Dr. Cenk Sahinlap
 - Ermin Hodzic
- Vancouver Prostate Centre
 - Dr. Colin Collins
 - Kendric Wang
 - Jake Yeung
 - Shawn Anderson
- University of Cambridge
 - Dr. Thomas Sauerwald

- Monash University
 - Dr. Reza Haffari
- NCBI
 - Dr. Phuong Dao
- University of Padova
 Dr. Fabio Vandin

HIT'nDRIVE: https://github.com/sfu-compbio/hitndrive