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Abstract. A key challenge in cancer genomics is the identification and priori-
tization of genomic aberrations that potentially act as drivers of cancer. In this
paper we introduce HIT’nDRIVE, a combinatorial method to identify aberrant
genes that can collectively influence possibly distant “outlier” genes based on
what we call the “random-walk facility location” (RWFL) problem on an interac-
tion network. RWFL differs from the standard facility location problem by its use
of “multi-hitting time”, the expected minimum number of hops in a random walk
originating from any aberrant gene to reach an outlier. HIT’nDRIVE thus aims to
find the smallest set of aberrant genes from which one can reach outliers within
a desired multi-hitting time. For that it estimates multi-hitting time based on the
independent hitting times from the drivers to any given outlier and reduces the
RWFL to a weighted multi-set cover problem, which it solves as an integer linear
program (ILP). We apply HIT’nDRIVE to identify aberrant genes that potentially
act as drivers in a cancer data set and make phenotype predictions using only the
potential drivers - more accurately than alternative approaches.

1 Introduction

Over the past decade, high-throughput sequencing efforts have revealed the importance
of genomic aberrations in the progression of cancer [1]. During the time course of can-
cer evolution, tumor cells accumulate numerous genomic aberrations, however only a
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few “driver aberrations” are expected to confer crucial growth advantage - and have
potential to be used as therapeutic targets. The identification of these driver aberra-
tions and the specific genes they alter poses a significant challenge as they are greatly
outnumbered by functionally inconsequential “passenger” aberrations which contribute
further towards cancer heterogeneity [1, 2].

While several methods for finding drivers of cancer have been described previously,
most of them rely on the recurrence frequency of single nucleotide variants with respect
to the background mutation rate in a population of tumors [3, 4]. These approaches
are restricted to identifying only highly recurrent mutations as driver events. However,
recent whole-genome studies have revealed that important genes may be recurrently
mutated in only a small fraction of the tumor cohort under study, and can be subtype-
specific [5–7]. Furthermore, personalized rare drivers are likely to arise during later
stages of tumor evolution and be isolated to a small fraction of tumor cells [8, 9].

Perhaps the first computational method to consider large scale genomic variants as
driver events is by Akavia et al. [10], which correlates genes with highly recurrent copy
number alterations with variation in gene expression profiles within a Bayesian network.
Similarly, Masica and Karchin [11] correlate gene mutation information with expression
profile changes in other genes, again with no prior knowledge of pathways or protein
interactions. Another approach, (Multi) Dendrix [12] aims to simultaneously identify
multiple driver pathways, assuming mutual exclusivity of mutated genes among patients,
using either a Markov chain Monte Carlo algorithm or integer linear programming (ILP).
Finally, MEMo by Ciriello et al. [13], identifies sets of proximally-located genes from
interaction networks, which are also recurrently altered and exhibit patterns of mutual
exclusivity across the patient population. To the best of our knowledge, the first method
to link copy number alterations to expression profile changes within an interaction net-
work is by Kim et al. [14] which connects specific “causal” aberrant genes with potential
targets in a protein interaction network. Similarly, method, PARADIGM [15], computes
gene-specific inferences using factor graphs to integrate various genomic data to infer
pathways altered in a patient. A more recent tool, HotNet by Vandin et al. [16], was the
first to use a network diffusion approach to compute a pairwise influence measure be-
tween the genes in the (gene interaction) network and identify subnetworks enriched for
mutations. TieDIE [17] also uses the diffusion model to identify a collection of pathways
and subnetworks that associate a fixed set of driver genes to expression profile changes
in other genes. Briefly, the network diffusion approach aims to measure the influence
of one node over another by calculating the stationary proportion of a “flow” originat-
ing from the starting node, that ends up in the destination node. Since it is based on the
stationary distribution, the inferences that can be made by the diffusion model are time
independent. In that sense, the diffusion approach is very similar to Rooted PageRank,
the stationary probability of a random walk originating at a source node, being at a given
destination node. A final method, DriverNet by Bashashati et al [18], also aims to corre-
late single nucleotide alterations with target genes expression profile changes, but only
among direct interaction partners. The novel feature of DriverNet is that it aims to find
the “minimum” number of potential drivers that can “cover” targets.
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Our Contributions. In this paper we present a novel integrative method that considers
potential driver events at the genomic level, i.e. single nucleotide mutations, structural
or copy number changes. Our contributions are as follows:

1. We present HIT’nDRIVE, an algorithm that aims to identify “the most parsimo-
nious” set of patient specific driver genes which have sufficient “influence” over a
large proportion of outlier genes. HIT’nDRIVE formulates this as a “random-walk
facility location” problem (RWFL), a combinatorial optimization problem, which,
to the best of our knowledge, has not been explored earlier. RWFL differs from
the standard facility location problem by its use of “multi-source hitting time” (or
multi-hitting time) as an alternative distance measure between a set of aberrant
genes (potential drivers) and an outlier gene. Multi-hitting time generalizes the no-
tion of hitting time [19]: we define it as the expected minimum number of hops in
which a random walk originating from any aberrant gene reaches the outlier for the
first time (in the human gene or protein interaction network). RWFL problem thus
asks to find the smallest (the most parsimonious) set of aberrant genes from which
one can reach (at least a given fraction of) all outliers within a user defined multi-
hitting time. We believe that applications of RWFL problem may extend beyond its
application to driver gene identification - to influence analysis in social networks,
disease networks, etc.

2. Since RWFL problem is NP-hard, we estimate the multi-hitting time based on the
independent hitting times of the drivers to an outlier, which provides an upper
bound on the multi-hitting time. Our experiments show that this estimate works
well for the human protein interaction network.

3. More importantly, our estimate enables us to reduce the RWFL problem to a
weighted multi-set cover problem, for which we give an ILP formulation. For the
specific problem instances we consider, our ILP formulation is solvable exactly by
CPLEX in less than two days on a standard PC.

4. Note that hitting time as a measure for influence of one potential driver on an outlier
gene is quite different from the diffusion-based measures or the Rooted PageRank:
hitting time essentially measures the expected distance/time between a source node
and a destination node in a random walk. We argue that hitting time is a better mea-
sure to capture the influence of one (driver) node over another as it is (i) parameter
free (diffusion model introduces at least one additional parameter - the proportion
of incoming flow “consumed” at a node in each time step), (ii) it is time dependent
(while the diffusion model and PageRank measures the stationary behavior) and
(iii) it is more robust (w.r.t. small perturbations in the network; see [20]).

5. We also show that, by a simple Monte Carlo method, the hitting time in networks
with n nodes that have constant average degree and small diameter (as per the hu-
man protein interaction network) can be estimated in Õ(n2) time. For computing
the hitting time in general networks, alternative methods [21] require to perform a
complete matrix inversion, which takes O(n2+c) time for some c > 0.37.

6. We have applied HIT’nDRIVE to identify genes subject to somatic mutation and
copy number changes that potentially act as drivers in glioblastoma cancer. We then
used the identified potential drivers to perform phenotype prediction on the cancer
data set, solely based on gene expression profiles of small subnetworks “seeded”
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by the drivers. For that we extended the OptDis method [22] by focusing only
on driver-seeded subnetworks and achieved a higher accuracy than the alternative
approaches.

2 HIT’nDRIVE Framework

HIT’nDRIVE naturally integrates genome and transcriptome data from a number of
tumor samples for identifying and prioritizing aberrated genes as potential drivers. It
“links” aberrations at the genomic level to gene expression profile alterations through a
gene or protein interaction network. For that, it aims to find the smallest set of aberrated
genes that can “explain” most of the observed gene expression alterations in the cohort.
In other words, HIT’nDRIVE identifies the minimum number of potential drivers which
can “cause” a user-defined proportion of the downstream expression effects observed.

HIT’nDRIVE uses a particular “influence” value of a potential driver gene on other
(possibly distant) genes based on the (gene or protein) interaction network in use. In
order to capture the uncertainty of interaction of genes with their neighbours, it con-
siders a random walk process which propagates the effect of sequence alteration in one
gene to the remainder of the genes through the network. As a result, the influence is
defined to be the inverse of hitting-time, the expected length (number of hops) of a ran-
dom walk which starts at a given potential driver gene, and “hits” a given target gene
the first time in a (protein or gene) interaction network. More specifically, for any two
nodes u, v ∈ V of an undirected, connected graph G = (V, E), let the random variable
τu,v denote the number of hops in a random walk starting from u to visit v for the first
time. The hitting-time Hu,v, thus is defined as Hu,v = E[τu,v] [23].

In order to capture synthetic lethality like scenarios, HIT’nDRIVE also considers
multiple aberrated genes as potential drivers. For that, we define the influence value
(of a set of potential driver genes on a target) as the inverse of multi(source)-hitting
time, i.e., the expectation of the smallest number of hops in one of the random walk
processes, simultaneously starting at each one of the potential drivers and ending at a
given outlier for the first time. More specifically, let U ⊆ V be a subset of nodes of G
and v ∈ (V − {U}) be a single node. We thus define the multi(source)-hitting time HU,v

as HU,v = E[minu∈U τu,v].
HIT’nDRIVE formulates the process of potential driver gene discovery in terms of

the “random-walk facility location” (RWFL) problem, which, for a single patient can
be described as follows.

Let X be a set of potential driver genes andY be a set of expression altered (outlier)
genes. Then, for a user defined k, HIT’nDRIVE can aim to return k potential driver
genes as solution to the following optimization problem:

arg minX⊆X,|X |=k max
y∈Y

HX,y

where HX,y denotes the multi-hitting time from the gene set X to the gene y.
RWFL problem resembles the standard (minimax) “facility location” problem in which
one seeks a set of nodes as facilities in a graph such that the maximum distance from
any node in the graph to its closest facility is minimized. RWFL differs from standard
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facility location by its use of HX,y as a distance measure between a collection of nodes to
any other node, which aims to capture the uncertainty in molecular interactions during
the propagation of one or more signals, by random walks starting from one or more
origins (reminiscent of the underlying Brownian motion).

Since the standard facility location is an NP-hard problem, RWFL problem is NP
hard as well. As shown in the next section, we overcome this difficulty by introducing
a good estimate on the multi-hitting time that helps us to reduce RWFL problem to
the weighted multi-set cover problem, which we solve through an ILP formulation in
Section 3. (Although the use of set-cover for representing the most parsimonious so-
lution in a bioinformatics context is not new [24], to the best of our knowledge this is
the first use of the multi-set cover formulation for maximum parsimony.) In this for-
mulation, we use a slightly different objective: given a user defined upper bound on the
maximum multi-hitting time, we now aim to minimize the number of potential drivers
that can “cover” (a user defined proportion of) the outlier genes. For more than one
patient, we minimize the number of drivers that can “cover” (a user defined proportion
of) patient-specific outliers such that each such outlier is covered by potential drivers
that are aberrant in that patient.

2.1 Estimating Hitting Time on a Protein-Protein Interaction (PPI) Network

As mentioned before, HIT’nDRIVE estimates the multi-hitting time H(U, v) between a
set of nodes U and a single node v, as a function of independent hitting times H(u, v) for
all u ∈ U - as will be shown later. However, even computing H(u, v) is not a trivial task
in a general graph G = (V, E) as it requires a solution to a system of |V | linear equations
with |V | variables. Below we show how to efficiently calculate H(u, v) for all u, v ∈ V
for a graph G = (V, E) with constant average degree and small diameter - as per the
available human protein interaction network (or any small world network).

Let Hmax = max
u,v
{Hu,v}. Our aim is to estimate Hu,v empirically by performing in-

dependent random walks and taking the average of the observed hitting times. More
formally, for any given number of iterations m > 1 and pair u, v ∈ V , let X1, X2, ..., Xm

be a sequence of independent random variables which have the same distribution as τu,v

for every 1 ≤ i ≤ m. Then the empirical hitting time is defined as H̃u,v =
1
m ·
∑m

i=1 Xi.
The following theorem shows how fast H̃u,v converges to Hu,v.

Theorem 1. Assume that G is a graph such that the maximum hitting time satisfies
Hmax ≤ Cn for some constant C > 0 and let u, v be an arbitrary pair of nodes. Then for
any ε ∈ [ 1

n4 , 1], after m = (128C)2(1/ε)2(log2 n)3 iterations, the returned estimate H̃u,v

satisfies

Pr
[
|H̃u,v − Hu,v| ≤ εn

]
≥ 1 − n−3.

Moreover, with probability at least 1−n−7, the total number of random walk hops made
is at most m · 32Cn log2 n = O((1/ε)2n log4 n).

We provide the proof of Theorem 1 in the Supplements. To obtain the empirical esti-
mates of all n2 hitting times Hu,v efficiently, observe that taking a single random walk
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starting from u until all nodes are visited gives an estimate for all n hitting times Hu,v

with v ∈ V . Since for fixed v ∈ V , all m estimates for Hu,v (coming from m iterations)
are independent, we conclude by the first statement of Theorem 1 and the union bound
that with probability at least 1 − n−2, for fixed u ∈ V all n estimates H̃u,v approximate
Hu,v up to an additive error of εn. Similarly, the total number of random walk hops to
obtain all these n approximations is O((1/ε)2n log4 n) with probability at least 1 − n−6.
Finally, we do the above procedure for all n possible starting vertices u ∈ V , so that
with probability at least 1 − n−1, we have an εn-additive approximation for each of the
n2 hitting times, and the total number of random walk hops is O((1/ε)2n2 log4 n) with
probability at least 1 − n−5.

2.2 Estimating Multi-source Hitting Time via Single-Source Hitting Times

Given U = {u1, u2, . . . , uk}, we now show how to estimate HU,v by a function of inde-
pendent pairwise hitting times Hui ,v for all ui ∈ U. A natural estimate is

HU,v ≈ 1
∑k

i=1
1

Hui ,v

(1)

Let the conductance of graph G be defined asΦ(G) = min∅�S�V
|E(S ,V\S )|

min{vol(S ),vol(V\S )} .Many
real-world networks including preferential attachment graphs are known to have large
conductance [25]. For such graphs, our next theorem provides mathematical evidence
for the accuracy of our estimate in (1).

Theorem 2. Let G = (V, E) be any graph with constant conductance Φ > 0. Then
there is an integer C = C(Φ) > 0 such that, given an integer k, a set of nodes U =
{u1, u2, . . . , uk} and node v ∈ V satisfying 1

k· deg(v)
2|E|
≥ log1.5 n, the following inequality

holds:

HU,v ≤ C · 1
∑k

i=1
deg(v)
2|E|
.

In particular, for any pair of nodes u, v with deg(v) ≤ 2|E|
log1.5 n

we have Hu,v = O( |E|
deg(v) ).

We provide the proof in the Supplements. Note that the bound in Theorem 2 differs from
our estimate in equation (1) in that 1

Hui ,v
is replaced by deg(v)

2|E| . However, for graphs with
constant conductance, we have Hu,v ≤ Hπ,v +O(log n), where Hπ,v is the hitting time for
a random walk starting according to the stationary distribution π, given by π(w) = deg(w)

2|E|
for every w ∈ V . Hence 2|E|

deg(v) = Hv,v ≤ Hπ,v + O(log n). Since Hπ,v =
∑

u∈U π(u) · Hu,v,
it follows that, given any fixed node v, it holds for “most nodes” u that Hu,v is not much
smaller than 2|E|

deg(v) − O(log n).

3 Reformulation of RWFL as a Weighted Multi-set Cover Problem

Since RWFL is NP-hard we reduce it to the weighted set cover problem, which we
solve via an ILP formulation. This formulation also generalizes RWFL to allow patient-
specific drivers and outlier genes. Consider a bipartite graph Gbip(X,Y,E) where X is
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Fig. 1. Schematic overview of construction of bipartite graph in HIT’nDRIVE. The influence
matrix derived from the interaction network contains the inverse hitting time between every pair
of genes. A and B are gene-patient matrices showing the genomic abberations and expression
alteration events, respectively. The red color in A indicates the aberration status of a gene in a
patient. Similarly, the green color in B indicate expression altered genes in a patient. The edges
in the bipartite graph are weighted by the inverse hitting time within the PPI network.

the set of aberrant genes,Y is the set of patient-specific expression altered genes, and E
is the set of edges. If gene gi is mutated in a patient p, we set edges between gi and all
of the expression altered genes in the same patient (g j, p) where the edges are weighted
by the inverse pairwise-hitting times wi, j := H−1

gi ,gj
; see the Figure 1 for more details.

We now define a minimum weighted multi-set cover (WMSC) problem on Gbip, whose
solution provides an exact solution to RWFL problem, provided our estimate of the
multi-hitting times are accurate, i.e.

arg minX⊆X|X| such that max
y∈Y

HX,y ≤ Δ (2)

where Δ is the maximum allowed multi-hitting time from the drivers to any expression
altered gene.

WMSC asks to compute as the potential driver gene set, the smallest set which “suf-
ficiently” covers “most” of the patient specific expression altered genes:

arg minX∈X min
Y⊆Y,|Y |≥α|Y|

|X| such that ∀y ∈ Y :
∑

x∈X
wx,y ≥ γy (3)

where 0 < α ≤ 1 represents the fraction of patient-specific expression altered genes
that we believe are causally linked to the potential drivers. The left-hand-side of the
constraints in (2) and (3) are related by H−1

X,y ≈
∑

x∈X H−1
x,y, as mentioned in Section 2.2.

The introduction of γy makes it possible to control the minimum amount of “coverage”
needed for individual expression alteration events (each patient potentially indicates a
unique expression alteration event for each gene).
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3.1 An ILP Formulation for WMSC

minx1,..,x|X|
∑

i xi

s.t.
∀i, j : xi = ei j

∀ j :
∑

i ei jwi j ≥ y jγ
∑

i wi j∑
j y j ≥ α|Y|

xi, ei j, y j ∈ {0, 1}
Fig. 2. ILP formulation

We formulate WMSC as an ILP and solve it using
an off-the-shelf ILP solver. The ILP formulation for
our combinatorial optimization problem is as Figure 2
where there is a binary variable xi, y j, ei j, respec-
tively, for each potential driver, expression alteration
event, and edge in the bipartite graph. The first con-
straint ensures that a selected driver contributes to the
coverage of each of the expression alteration events
it is connected to - in each patient. The second con-
straint ensures that selected (patient-specific) driver
genes cover at least a (γ) fraction of the sum of all
incoming edge weights to each expression alteration
event. This constraint corresponds to setting a lower
bound on the joint influence (i.e. our estimate on the inverse of multi-hitting time) of
selected (patient specific) drivers on an expression alteration event. The third constraint
ensures that the selected driver genes collectively cover at least an α fraction of the set
of expression alteration events.

4 Evaluation Framework

Evaluating computational methods for predicting cancer drivers is challenging in the
absence of the ground truth (i.e. follow-up biological experiments). We refer to previous
studies [18] that observe the overlap between predicted driver genes and known cancer
genes compiled in public resources such as the Cancer Gene Census (CGC) database
[26] or the Catalogue of Somatic Mutations in Cancer (COSMIC) database [27] and
we provide those numbers as well. However, we mainly focused on testing whether
our predictions provide insight into the cancer phenotype and improve classification
accuracy on an independent cancer dataset. The classifiers we evaluate are based on
network “modules”, a set of functionally related genes (e.g. in a signaling pathway),
which are connected in an interaction network and include at least one potential driver.
They then use module features, such as the average expression of genes in the module,
for phenotype classification.

Using such module features, we hope that the classifier in use does not overfit on rare
drivers and is able to generalize the signal coming from rare drivers to new patients.

For classification purposes we primarily use OptDis [22] for de novo identification
of modules which include (i.e. are seeded by) at least one predicted driver gene. In
general, OptDis performs supervised dimensionality reduction on the set of connected
subnetworks.

It projects the high dimensional space of all connected subnetworks to a user-specified
lower dimensional space of subnetworks such that, in the new space, the samples belong-
ing to the same (different) class are closer (respectively, more distant) to each other with
respect to a normalized distance measure (typically L1).

Since the human PPI network has a small diameter, there is significant overlap be-
tween many modules seeded by potential driver genes. In order to limit the number of
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overlapping modules (and achieve further dimensionality reduction) we first compute
the top 10 modules seeded by each driver gene that have the best individual “discrimina-
tive scores” (a linear combination of the average in-class distance and out-class distance
[22]). The modules seeded by all potential drivers are then collectively sorted based on
their discriminative score. Among these modules, we greedily pick a subset in a way
that the ith module is added to our result subset R if its maximum pairwise node overlap
with any module already in R is no more than a user-defined threshold.

5 Experiments

We use a publicly available cancer dataset representing matched genomic aberration (so-
matic mutation, copy-number aberration) and transcriptomic patterns (gene-expression
data) of 156 Glioblastoma Multiforme (GBM) samples [5] from The Cancer Genome
Atlas (TCGA). We make use of a global network of protein-protein interaction (PPI)
from the Human Protein Reference Database (HPRD) version April 2010 [28] to derive
the influence values based on the hitting time. We use the same PPI Network for mod-
ule identification using our modification to OptDis. We ran HIT’nDRIVE with different
combinations of values for the variables α and γ as given in Figure 3-A. For a fixed γ,
the number of selected driver genes increased linearly with the value of α. The increase
in the number of drivers is expected as more drivers are required to cover larger fraction
of abnormal expression events.

Evaluation Based on CGC and COSMIC Databases. To assess whether the genes
identified by HIT’nDRIVE are essential players in cancer, we first analyzed the concor-
dance of the predicted drivers with the genes annotated in CGC and COSMIC database.
Gene sets resulting with the parameters γ = 0.7 and α = {0.1, 0.2, ..., 0.9} were ana-
lyzed (Figure 3-B). The fraction of driver genes affiliated with cancer in the CGC and
COSMIC databases increase with increasing values of α.The remainder of results are
obtained for parameter values γ = 0.7 and α = 0.9 this results in 107 driver genes
covering the majority (22933) of outlier genes in 156 patients.

Phenotype Classification Using Dysregulated Modules Seeded with the Predicted
Drivers. We evaluated the driver genes identified by HIT’nDRIVE using phenotype
classification (as described in Section 4 and results are shown in Figure 4). Briefly,
drivers identified from the TCGA dataset were used as seeds for discovering discrimina-
tive subnetwork modules. The module expression profiles were used to classify normal
vs. glioblastoma samples through repeated cross-validation on the validation dataset.
First, HIT’nDRIVE using hitting time based influence values, was compared against
DriverNet, which greedily identifies driver genes using direct gene interactions from
the HPRD network. Across the appreciable range of discriminative modules discovered
by OptDis, HIT’nDRIVE demonstrates better accuracy in classifying the cancer phe-
notype, with a maximum accuracy of 96.9% and a mean accuracy of 93.4% (Figure 4).
Next, comparing the HIT’nDRIVE deduced drivers against a comparable number of
genes with the highest node-degrees in the PPI network reveals a clear advantage to
HITnDRIVE. This trend was observed when genes were used as individual classifi-
cation features (blue vs. orange plots) as well as when they were used as seeds for
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Fig. 3. Behavior of HIT’nDRIVE as a function of α and γ. (A) The number of selected drivers
and covered outliers as α increases for various values of γ. Note that some of the data points are
missing for the problems which could not be solved within 48 hours. (B) Concordance of GBM
driver genes with that of COSMIC and Cancer Gene Census database for γ = 0.7.

module-based features (red vs. brown plots). Comparing the classification accuracy of
HITnDRIVE deduced drivers against 107 genes randomly selected from the entire list
of aberrant genes (red vs. grey plots) provides additional support for the relevance of
drivers selected by HITnDRIVE. This is also confirmed by comparing the performance
of hitting-time based influence values against those derived from the diffusion model
[16] (red vs. black plots) both employed by HITnDRIVE.

Sensitivity of HIT’nDRIVE to Small Perturbations of the PPI Network. We per-
turbed the PPI network by swapping endpoints at random of 20% edges and recalculated
pairwise hitting times. We observed that almost all changes are less than 10% relative
to the original values, most of them being between 1% and 5%. However, impact on
accuracy of classification using HIT’nDRIVE output can be noticed in Figure 4.

Prediction of Frequent and Rare Drivers. The 107 driver genes nominated by
HIT’nDRIVE are aberrated at varying frequencies in the tumor population (Figure 5-
A). CHEK2 and EGFR are the two most frequently aberrated drivers (at 46.8% and
42.3% respectively), followed by CDKN2A (31.4%), MTAP (30.1%) and CDKN2B
(29.5%). Some of these frequent drivers harbour different types of genomic aberrations in
different patients. For example, EGFR shows somatic mutation and high copy-number
gain in 14.2% and 32.7% of the patients, respectively. Similarly, PTEN harbours so-
matic mutation in 12.8% and homozygous deletion in 3.9% of the patients. Amplifi-
cation in EGFR, PDGFRA, mutations in CHEK2, TP53, PTEN, RB1, and deletions in
CDKN2A have been previously associated with GBM [5, 29, 30]. HIT’nDRIVE also
identified infrequent drivers, which we defined as genes that are genomically aberrant in
at most 2% of the cases. Out of 27 (25.2%) rare driver genes identified, four genes (FLI1,
BMPR1A, MYST4, and BRCA2) were implicated in the CGC database. Despite being
aberrant in a small fraction of patients, the rare drivers are specifically associated with
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Fig. 4. Phenotype classification using the identified drivers obtained by various methods.
The dysregulated sets of modules seeded by the 107 chosen drivers are used to predict phenotype
in the validation dataset using using k-nearest neighbour classifier with k=1. We used the HPRD-
PPI Network for module identification using our modification to OptDis.

Fig. 5. Characteristics of driver genes of GBM predicted by HIT’nDRIVE. (A) Recurrence
frequency of the aberration in the driver genes predicted by HIT’nDRIVE. (B) The centrality of
the predicted drivers in the PPI network.The size of the circles is proportional to the recurrence
frequency of the genomic aberration of the gene. (C) Centrality of the “driver” and “passenger”
genes is colored by red and blue dots respectively; all other nodes in the PPI network apart from
the driver and passenger genes are represented as grey dots.
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cancer development, DNA repair, cell growth and migration, cell death and survival.
Some rare drivers like MAG and BMPR1A have also been closely linked with GBM
progression [31, 32].

Prediction of Low-degree and High-degree Drivers. The drivers predicted by
HIT’nDRIVE include a number of well-known high-degree “hubs” such as TP53, EGFR,
RB1 and BRCA1, which occupy the central position (with high degree and high be-
tweenness, i.e. the proportion of shortest paths between all pairs of nodes that go through
that node, and high degree - computed by the igraph [33] R package.) in the PPI net-
work (Figure 5-B). If these genes are perturbed, they dysregulate several other genes and
the associated signaling pathways. Moreover, HIT’nDRIVE also identified low-degree
genes (such as IFNA2, UTY, and RYR3) that reside in the periphery of the PPI network.
Some of these low-degree genes are only aberrant in a small fraction of patients. Since
driver genes and passenger genes display similar network characteristics (Figure 5-C),
and identified driver genes have both low and high degrees in the network, HIT’nDRIVE
likely selects drivers irrespective of known network biases.

6 Conclusion and Future Work

We have presented HIT’nDRIVE, a combinatorial method to capture the collective ef-
fects of driver gene aberrations on possibly distant “outlier” genes based on what we
call the “random-walk facility location” (RWFL) problem. We introduced the notion of
“multi-source hitting time” and presented efficient and accurate methods to estimate it
based on single-source hitting time in large-scale networks. We applied HIT’nDRIVE
to identify genes subject to somatic mutation and copy number in GBM. Our results
showed that the predicted driver genes identified by HIT’nDRIVE are well-supported
in databases of important cancer genes. Furthermore, these drivers were able to perform
phenotype predictions more accurately than the alternative approaches. Importantly, the
discovery of these drivers were not biased by the frequency of aberration and/or the de-
gree of a gene in the PPI network. Our approach can easily integrate various aberration
types such as single nucleotide changes, copy number changes, structural variations,
and splice variations. Furthermore, it can be straightforwardly extended to incorporate
epigenome and/or gene-fusions data. As gene networks increase in density and volume
of interaction, HIT’nDRIVE will be able to capture such improvements naturally. Fi-
nally our method is well suited to identify patient-specific driver-aberrations which can
potentially be used as therapeutic targets.

Supplements: All supplementary material can be found and downloaded at
http://compbio.cs.sfu.ca/software-hitndrive.
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